16年度研究開発事業の概要

工業技術センターでは、地域ニーズに応えるべく試験分析、技術相談、従業研究、人材育成、研究開発など様々な業務を行っています。平成16年度の主な研究開発事業は以下のとおりです。

知的クラスター形成事業
地域産業の活性化に資するため、センターセーラー創製を主眼とした10テーマの研究開発を実施します。

技術移転促進事業
センターに蓄積された試験研究成果から実用化が高く望まれる技術開発項目について行う「センター保有シーズ活用型研究」、または企業から実用化が望まれる技術開発項目について行う「企業ニーズ実用化型研究」を産官共同研究の方法により実施します。研究終了後概ね3年以内に実用化を図ろうとするものです。

即効型企業ニーズ実用化試験研究事業
企業ニーズの早期実用化を図るため、訪問調査による企業ニーズの発掘と共同研究開発に向けた可能性試験を実施します。

戦略的研究開発プラン
県立試験研究機関が行う研究について、外部有識者が事前評価を行い、優れた研究を選定し、重点的に予算を配分して県民生活の向上に繋がる成果を得ることを目的に15年度は3テーマが実施され、16年度は3テーマが採択され2～3年間の期間で研究開発を行います。

産学官連携研究
文部科学省の補助により都市エリア産学官連携促進事業を実施します。また財団法人わかやま産業振興財団が行う、のちにコンソーシアム研究開発事業で、5テーマの研究開発に参画します。
1. 目的
県内皮革産業は、東南アジアからの廉価品及びヨーロッパからの高級ブランド品の輸入増加によって市場が侵食され、また国内では企業間で価格競争が激化している。県内企業が生き残るためにはコスト削減に努めるだけでなく、他産地で無い新素材の開発が必要である。また、製造工程で有害な薬品を使用しない、そして使用済みは無公害処理できるなど、環境に優しい製革技術の開発が社会的要請となっている。このような状況に対応するため、和歌山県製革産業協同組合と工業技術センターが協力してクロムなどの金属鞣剤を用いない鞣製、石油系合成染料に代わる天然色素による染色、ラッカー、ウレタンのような溶剤系に代わる天然樹脂仕上げなどの技術を開発し、和歌山オリジナルの紀州革の製造に取り組んでいる。

2. 製革工程
一般的な製革工程の概要を図1に示す。

3. 柿渋の製法・特徴など
市販の植物タンニン鞣剤は、植物の木質部・樹皮・実・葉などを粉碎→水抽出→乾燥した固体で主なものとしてミモサ、ケプラチョ、タラ、ガキビア、ミラボラムなどがあり、有効成分60~80％、pH3.5である。
一方、本実験に用いた柿渋は未熟な青柿を粉碎→圧搾→発酵→熟成した水液で、固形分7~8％、pH4.3~4.5である。柿渋の主成分は市販の植物タンニン鞣剤と同じポリフェノールで、防水性、防腐効果、接着性、収縮性を有し、医薬用、染色剤、塗料、清潔剤、塗装下地などに用いられる。

4. 皮粉による鞣製試験
植物タンニン含有量の標準皮粉を試料として、柿渋の鞣皮特性を調べた。試験方法は以下のとおりである。
皮粉10gを各処理ごとに所定量の液とステンレス鋼球10個と共に400mlの容器に入れて25℃で振盪。鞣製条件は柿渋鞣製（pH3.5~4.0と仮に、6）、後処理pH（3、4、6）と、9種類の組み合わせで行った。pH上昇率は10％炭酸ナトリウム、下降率は10％硫酸を用いた。
水洗：水100gで30分間。柿渋鞣製：目標pH1に調製した柿渋150gで7時間（この間、1時間毎に所定pHに調製）、後処理：一晩浸漬した後、所定のpHに調製しながら7時間、透過：G2ガラスフィルター（ろ液-1）、皮粉は30℃で72時間熟成。洗浄：水200gで2時間、透過：G2ガラスフィルター（ろ液-2）、皮粉は真空乾燥。
鞣製皮粉の耐熱性をJIS K 6550により測定し、ろ液-1と-2の柿渋量から皮粉への吸着量を算出した結果及び官能評価の結果を表1に示す。
表1 皮粉試験の結果

<table>
<thead>
<tr>
<th>処理pH*1</th>
<th>吸着量*2</th>
<th>耐熱性*3</th>
<th>感触</th>
<th>色調</th>
<th>総合</th>
</tr>
</thead>
<tbody>
<tr>
<td>3－3</td>
<td>3.7</td>
<td>6.3</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>3－4</td>
<td>3.3</td>
<td>6.5</td>
<td>△</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>3－6</td>
<td>3.0</td>
<td>6.3</td>
<td>○</td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>4－3</td>
<td>3.8</td>
<td>2.6</td>
<td>×</td>
<td>×</td>
<td>△</td>
</tr>
<tr>
<td>4－4</td>
<td>3.0</td>
<td>6.0</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>5－6</td>
<td>2.5</td>
<td>6.0</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>6－3</td>
<td>2.7</td>
<td>2.7</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>6－4</td>
<td>2.5</td>
<td>6.2</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>6－6</td>
<td>2.2</td>
<td>2.3</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

*1醸製一後処理 *2皮粉100gへの柿渋吸着 *3水中加熱（生皮54℃）

皮粉100gへの柿渋吸着量は最大で40gで達せず、革の鞣しに常用されている植物タンニンの半分程度であった。しかし、吸着量によらず耐熱性は生皮よりも10℃前後高い62～65℃を示しており、柿渋が鞣皮力に有することが認められた。

感触と色調も併せて総合判断すると処理pH3.3が最も適していると思われた。

平成15年度戦略的研究開発プラン

「廃木材のL-乳酸木材分解物を用いた人と環境に優しい木材用接着剤、防腐防虫剤の開発」

材料技術部 副主査研究員 梶本 武志

1. 研究の背景

現在、資源循環型社会形成のためにリデュース、リユース、リサイクルの推進が図られています。和歌山市地域の建具・家具工業の製造工程では木材廃材が月100トン発生しており、自社の廃棄防止対策により減量化されるのが一般的でした。平成12年1月15日にはダイオキシン類対策特別措置法が施行され、廃棄物の焼却処理を行う際には年1回以上の報告が義務づけられました。廃材中にはポリ塩化ビニル貼りの木質建材が含まれていることがあり、焼却処理することで法律の基準値を超えるダイオキシン類が発生する可能性がでてきた。その結果、廃材の焼却処理は困難になってしまいました。

一方、住宅様式の変化に伴ってTVOC（揮発性有機化合物）を原因とするシックハウス症候群が社会問題化してきました。平成15年7月1日には建築基準法において、住宅内装材（壁紙、接着剤、塗料などを含みます）に含まれるホルムアルデヒド量による使用制限が設けられました。

本研究の目的は、大量に発生する廃材のリサイクル技術の開発です。廃材をL-乳酸で分解し、ポリアルデヒドを含まない木材用の接着剤、防腐防虫剤に利用することを検討しています。L-乳酸はトウモロコシやサトウダイコンを乳酸菌で発酵して得られる物質で、バイオポリマーの原料となっています。

乳酸は全く無毒で、食品添加物として認められています。
表1 皮粉試験の結果

<table>
<thead>
<tr>
<th>処理pH*1</th>
<th>吸着量*2</th>
<th>耐熱性*3</th>
<th>感触</th>
<th>色調</th>
<th>総合</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3</td>
<td>3.7</td>
<td>6.3</td>
<td>○</td>
<td>○</td>
<td>◯</td>
</tr>
<tr>
<td>3-4</td>
<td>3.3</td>
<td>6.5</td>
<td>△</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>3-5</td>
<td>3.0</td>
<td>6.3</td>
<td>○</td>
<td>△</td>
<td>◯</td>
</tr>
<tr>
<td>4-3</td>
<td>3.8</td>
<td>6.5</td>
<td>□</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>4-4</td>
<td>3.0</td>
<td>6.2</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>4-5</td>
<td>2.5</td>
<td>6.3</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>6-3</td>
<td>2.7</td>
<td>6.3</td>
<td>□</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>6-4</td>
<td>2.5</td>
<td>6.2</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>6-6</td>
<td>2.2</td>
<td>6.3</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

*1 革製一後処理 *2 皮粉100gへの柿渋吸着g *3水中加熱（生皮54℃）

皮粉100gへの柿渋吸着量は最大でも40gに達せず、革の鞣しに常用されている植物タンニンの半分程度であった。しかし、吸着量によらず耐熱性は生皮よりも10℃前後高い62～65℃を示しており、柿渋が鞣皮化を有することが認められた。

感触と色調も併せて総合判断すると処理pH3.3が最も適していると思われた。

平成15年度戦略的研究開発プラン

「廃木材のL-乳酸木材分解物を用いた人と環境に優しい木材用接着剤、防腐防虫剤の開発」

材料技術部 副主査研究員 桐本 武志

1. 研究の背景

現在、資源循環型社会形成のためにリデュース、リユース、リサイクルの推進が図られています。和歌山市地域の建具・家具工業の製造工程では木粉端材が月100トン発生しており、自社の焼却炉で廃棄処理されるのが一般的でした。平成12年1月15日にはダイオキシン類対策特別措置法が施行され、焼却炉で端材の焼却処理を行う際には年1回以上の報告が義務付けられました。端材中にはポリ塩化ビニール製の木質建材が含まれていることがあり、焼却処理することで法律の基準値を超えるダイオキシン類が発生する可能性が出てきました。その結果、端材の焼却処理は困難になってきました。

一方、住宅様式の変化に伴ってTVOC（揮発性有機化合物）を原因とするスイッチハウス症候群が社会問題化してきました。平成15年7月1日には建築基準法において、住宅内装材（壁紙、接着剤、塗料など）を含むホルムアルデヒド量による使用制限が設けられました。

本研究の目的は、大量に発生する廃材のリサイクル技術の開発です。廃材をL-乳酸で分解し、ホルムアルデヒドを含まない木材用の接着剤、防腐防虫剤に利用することを検討しています。 L-乳酸はトウモロコシやサトウダイコンを乳酸菌で発酵して得られる物質で、バイオボリマーの原料となっています。

乳酸は全く無毒で、食品添加物として認められています。
2．研究内容

平成12-14年に実施された「地域のものづくり対策事業費補助事業」において、L-乳酸と木材を用いた可分解性材料の開発が行われています。分解物の生成と木材の分解について、各種条件での検討を行いました。L-乳酸による木材の分解結果を表1に示します。分解物を用いてパーティクルボード**を試作し物性評価を行った結果、ホットプレス温度及び時間が170℃、10分の場合、JISに規定する曲げ強度を超える木質ボードであることが分かりました。これにより、木材の再利用が可能であることが示唆されます。

本事業では、实用化をめざして総耐荷重100Kgの木材分解装置を試作（株式会社神崎化工株式会社）し、製造コストの低減と分解物の高機能化あるいは高付加価値化について研究を進めています。

表1 木材端材のL-乳酸による分解結果

<table>
<thead>
<tr>
<th>木材端材（g）</th>
<th>分解試薬（g）</th>
<th>時間（hrs）</th>
<th>温度（℃）</th>
<th>分解率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>① チップ 1.0</td>
<td>L-乳酸 20.0</td>
<td>2.0</td>
<td>220</td>
<td>54.5</td>
</tr>
<tr>
<td>② チップ 1.0</td>
<td>L-乳酸 20.0</td>
<td>2.0</td>
<td>220</td>
<td>65.3</td>
</tr>
<tr>
<td>③ チップ 1.0</td>
<td>L-乳酸 20.0</td>
<td>2.0</td>
<td>220</td>
<td>93.3</td>
</tr>
</tbody>
</table>

*1：木材を小片化し、約10％の接着剤を混ぜて成型した板。*2：JIS A 5905 パーティクルボード。

1） 小関英一：化学と工業, 49, 33(1996)
2） 例えば、辻利人ら、ポリ乳酸、高分子科学会（1997）
3） カークスマント化学大系：丸善株式会社発行. P.1116 (1992)
抗酸化活性評価法—ORAC法—

生活産業部 主査研究員 山 西 妃早子

活性酸素・フリーラジカルは、ガン、心臓病、脳卒中などの生活習慣病をはじめ数多くの疾病の一因となるといわれています。また、老化を加速させる原因とされています。このような活性酸素による発症が、予防医学の立場からも重要視され、活性酸素を捕捉する物質の検査が盛んに行われるようになってきています。

食品においても酸化反応は、風味、栄養価を損ない品質の劣化を引き起こします。筆者らはこれまで、安全な食品添加物（酸化防止剤）の開発を目指して、植物の葉などを対象にリノール酸の自動酸化モデル反応やβ-カロテン還元試験、DPPH（1,1-diphenyl-2-picrylhydrazyl）ラジカル捕捉測定法により酸化物質の変化を検討してきました。しかし、これらの評価系では供試試料の性状や酸化物質の強さによって適用できる評価方法が異なることから、同一の条件下で抗酸化活性を判断することは困難でした。そこで、性状の異なる、または極性の異なる試料間の比較を行う新たな評価法として、ORAC（Oxygen Radical Absorbance Capacity）法を導入しましたので、ご紹介します。

ORAC法は対象化合物の極性を問わないため、食品試料から生体試料まで幅広く酸化防止力の評価が可能です。特に生体内での抗酸化活性を高感度で定量的に測定する際に有効と考えられます。この方法では、基本的にはAAPH（2,2’-azobis(2-amino-2-methylpropane) dihydrochloride）の熱分解により発生するペルオキシラジカルにより、蛻光物質であるβ-フィトケリトリリン1) やフルオレセイン2) が分解を受け、蛻光が減衰することを利用しています。酸化物質の存在により蛻光の減衰は抑制され、その抑制の程度により、抗酸化力の測定が可能となります。図1に既知の抗酸化剤であるトロロックス（水溶性ビタミンE誘導体）を反応系に加えると蛻光の減衰が抑制されることを確認できます。この図で、抗酸化剤を含む系の減衰曲線と各濃度のトロロックスの減衰曲線には見られた部分の面積値の差をその濃度のORAC値として表し、未知のサンプルの場合は、ORAC値からトロロックス当量的に換算し、抗酸化活性として表されます。

この方法は、短時間で多検体の蛻光を測定記録する必要があり、専用の装置の使用を前提と開発されていましたが1)、マイクロプレートリーダー等の一般的な機器を使用する改良法2) が開発されています。

筆者らは、蛻光測定に応じたマイクロプレートリーダーを用い、96穴プレートで複数のサンプルのORAC値を測定することに成功を収め、現在、柿の葉や、梅果実成分の評価に着手しています。梅果実成分の評価に関しては、近畿大学や県内研究機関と連携しながら、検討を進めています。その成果については、また別の機会にご紹介いたします。

図1 トロロックス存在下におけるフルオレセインの蛻光減衰曲線

ORAC法に取組む近畿大学からの研修生
材料技術部が行う研究交流会及び研究会の紹介

◎廃棄物系バイオマスの利用技術研究交流会（財）わかやま産業振興財団・産学官研究交流会
平成14年12月に「バイオマス・ニッポン総合戦略」閣議決定され、バイオマス（再生可能な生物由来の有機物資源としてのたんぱく質を除いたもの）資源を活用するように指示が見られています。日本全体では約2億8千万トンもの廃棄物系バイオマスが排出されている（2000年度）。これら廃棄物をできるだけ削減し、さらに有効利用することが緊急の課題であります。バイオマスには生ゴミや食品廃棄物、家畜排泄物、製材工場の残材や建築廃材等の廃棄物、間伐材や稲草、もみ殻等の「未利用資源」がある地域に密着した技術を結集し、サマルリサイクルやマテリアルリサイクル等を含めた資源循環型社会を構築するための技術について検討します。

バイオマスってなに？
「バイオマス」は動植物から生まれた再生不可可能な有機資源です。代表的なものに家禽排せつ物や生ごみ、木くず、もみがらがあります。

図1.バイオマスとは
（農林水産省「バイオマス・日本」から抜粋）

◎乳酸系ポリマーの有効利用技術（財）わかやま産業振興財団・産学官研究交流会
生分解性プラスチックは、開発段階から実用化段階へと時代が進んできたように思われます。生分解性という従来からの概念のみでなく天然素材を活かした環境適応型材料へと新規な展開が図られています。研究交流会では、ポリ乳酸を中心に、他の生分解性プラスチックの用途や実用化の現状にスポットをあて、実用化への弱点とその問題解決に取り組みたいと考えております。また参加企業からの技術相談に柔軟に対応したいと考えております。

◎有機ELディスプレイ研究交流会（財）わかやま産業振興財団・産学官研究交流会
DVDレコーダー、ディジタルカメラ、携帯電話などのディジタル家電の好況で、電子工業の生産量は2002年実績18兆円、2003年見込み19兆円、2004年見通し20.3兆円となっています。この分野は次世代の産業の牽引力になると見られています。何時でも、何処でもアクセスできるユビキタス社会の実現に向けて、今後、プラスチックフレキシブル基板、有機半導体の開発が進み、ウェアラブルコンピューターが開発される
れ、益々モバイル機器が発展すると思われます。そしてディスプレイとして液晶より薄くて省電力のE.Lが期待されています。高分子製造業などを対象に有機ELディスプレイ研究交流会を開催し、フレキシブル基板材料、E.L発光材料、有機半導体などに用いられる有機材料について研究交流会を行い、新たな事業の創生の機とします。

○有機電子材料研究交流会（財）わかやま産業振興財団・産学官研究交流会

近年の情報・通信機器の著しい発展は有機電子材料の高機能化に依存しています。情報家電の分野は現在の2兆円規模の市場が2025年には28兆円になるとわれ、次世代の産業の牽引力になると思われます。和歌山の企業は機能性有機材料の中間体である化成品を製造しており、それらはレジスト材料、プリント基板材料、光学材料などの原料として使用しています。高分子製造業などを対象に有機電子材料研究交流会を開催し、基板材料、封止材料、プラスチック光ファイバー、電池材料などに用いられる有機材料について研究交流会を行い、新たな事業の創生の機とします。

○材料技術研究会（財）わかやま産業振興財団

南海地震等が想定される今、阪神淡路震災時において鉄鋼材料を使った構造物はRCコンクリートより見直され、震災以降も金属鉄鋼材料については高品質、高強度、構造物は超大型化・超高層化、高耐性・高耐熱材料・鋼材構造物加工の高度技術、複雑化、高度な検査を要求され、問題も多数考えられています。

本会では(1)金属材料の性質、(2)各種材料の溶接性、(3)腐食と破壊、材料の寿命、(4)機械特性試験と非破壊試験、(5)溶接構造物の破壊等を広い面から金属材料学、溶接技術を検討し、技術開発に役立つ研究会を行います。

設備紹介

粒度分布測定装置（平成15年度日本自転車振興会補助設備）

材料技術部

本装置は、JIS1629「ファインセラミックス原料のレーザー回折・散乱法による粒子径測定方法」に準拠したものです。本来の溶媒に分散させての湿式測定に加えて、乾式測定も可能です。サンプルの供給方法も噴射式と自由落下式の選択ができるため、凝集粉体の2次粒子や溶解性のサンプルも測定することができます。また、通常の湿式での測定において高濃度用のアタッチメントを使用することで、希釈することだけで状態が変化するようなエマルションなども測定できます。

メーカー　（株）島津製作所
型式　粒度分布測定装置SALD-3100
測定範囲　湿式測定：0.05〜3000μm
乾式測定　噴射式　：約0.8〜約1000μm
（測定条件により異なる）
自由落下式：約10〜3000μm
設備紹介

粒度分布測定装置（平成15年度日本自転車振興会補助設備）

本装置は、JIS1629「ファインセラミックス原粒子のレーザー回折・散乱法による粒径测定方法」に準拠したものです。本来の溶媒に分散させての湿式測定に加えて、乾式測定も可能で、サンプルの供給方法も喷射式と自由落下式の選択ができるため、凝集粉体の2次粒子や溶解性的サンプルも測定することができます。また、通常の湿式での測定において高濃度用のアタッチメントを使用することで、供試することで状態が変化するようなエマルジョンなども測定できます。

メーカー (株)鳥津製作所
型式 粒度分布測定装置SALD-3100
測定範囲 湿式測定：0.05〜3000μm
乾式測定 噴射式 ：約0.8〜約1000μm
（測定条件により異なる）
自由落下式：約10〜3000μm
安定化電源装置（平成15年度日本自転車振興会補助設備）
システム技術部

電子・電気システム、機械装置等の電子回路の検討に用い、電流、電圧、電力、周波数等の電気計測に
対する。海外向けの製品等の場合では、電源電圧が100V～240V（50Hz～60Hz）と幅が広いため、そ
れぞれの条件に対応した設計・開発を行い、装置の安全性の評価、性能・機能の評価及び適合される安全
規格への評価を行う必要があり、そのためには対象となる装置、機械に動作条件に即する安定した電源を
供給出来る装置を用い、各種の電気計測装置による性能確認のための情報収集が必要である。安定した交
流電源の供給により電子機器等の消費電力、積算電力、高調波測定を正確に測定することが出来ます。
90Aの大電流負荷に対応できるものや、高周波出力の電源など各種のDC電源があり、多種の電源要求に
対応できます。

1.交流安定化電源装置
 型式：AA2000GX
 メーカー：株式会社高砂製作所

2.直流安定化電源装置
 2出力電源：型式：PMM18-25DU
 メーカー：芝水電子工業株式会社
 4出力電源：型式：PMM24-1QU
 メーカー：芝水電子工業株式会社
 高機能/高精度電源（パワーボーラ型電源）
 型式：HAS 4012
 メーカー：株式会社エヌエフ回路設計ブロック
 大電流電源：型式：PAM 40-100
 メーカー：芝水電子工業株式会社

3.パワーメータ
 型式：WT1600
 メーカー：横河電機株式会社

4.マルチメータ
 高性能メータ：型式：34401A
 メーカー：アジェントテクノロジー
 ハードウェア：型式：PC5000
 メーカー：三和電気計器株式会社

5.電気負荷装置
 型式：PLZ-153W
 メーカー：芝水電子工業株式会社

6.ファンクションジェネレータ
 型式：WF1966
 メーカー：株式会社エヌエフ回路設計ブロック